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Chapter 1

Introduction:

Phase transitions play an essential role in nature. The universe itself is thought
to have passed through several phase transitions as the high temperature plasma
formed by the Big Bang cooled to form the world as we see it today. Normally,
phase transition occur upon variation of an external control parameter. They
occur at finite temperature where the macroscopic order is destroyed by thermal
fluctuations.

During recent years, a different kind of phase transition namely, quantum
phase transition [1] have attracted the attention of researchers. A non-thermal
control parameter such as pressure or magnetic field is varied to access the
transition point. Thus, the order is destroyed solely due to quantum fluctuations
which are rooted in the Heisenberg uncertainty principle.

Some of the systems, exhibiting quantum phase transitions, which are of
recent interest are heavy fermions in Kondo lattices, multi component sys-
tems of ultra-cold atoms in optical lattices, the ensemble of two-level atoms
interacting with a bosonic mode described by the Dicke model and more re-
cently, the Jaynes–Cummings–Hubbard (JCH)model. In the current thesis we
study the Jaynes-Cummings-Hubbard model which is a combination of the
two well–known systems (i) the Jaynes–Cummings (JC) model and (ii) the
Bose–Hubbard (BH) model.

(i) The JC model describes the coupling of a single two-level system to a
bosonic mode. The Hamiltonian describing this model is given by the expression:

ĤJC = ω
∑
j

â†j âj + ∆
∑
j

σ̂†j σ̂
−
j + g

∑
j

(σ̂†j âj + â†j σ̂
−
j ) (1.1)

where, â†, (â) is the photonic creation (annihilation) operator and σ̂+, (σ̂−) is
the spin raising (lowering) operator. In Eq. (1.1), ω is the cavity resonance
frequency, ∆ is the transition energy of an atom andg denotes the cavity -
mediated atom-photon coupling.

(ii) The Bose–Hubbard model describes the interaction and tunneling of
bosons on a lattice. The Hamiltonian which describe the system is:
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Figure 1.1: Schematic of the Jaynes-Cummings lattice system, consisting of an
array of electromagnetic resonators [see (a)], with a coupling between nearest
neighbor lattice sites due to photon hopping. Each resonator is coherently
coupled to a two-level system shown in (b)

HBH = −t
∑
〈i,j〉

(b̂†i b̂j + b̂†j b̂i) +
U

2

∑
j

n̂j (n̂j − 1) (1.2)

where, b̂†, (b̂) is the bosonic creation (annihilation) operator which satisfy
the commutation relation

[
b̂i, b̂

†
j

]
= δij and n̂i = b̂†i b̂i is the boson number

operator. The factor t is the hopping amplitude. The notation 〈i, j〉 implies
that the summation is done over i and j with the condition that i 6= j.

The BH model is an extension of the Hubbard model. The Hubbard model,
is the simplest model of interacting particles in a lattice, with only two terms
in the Hamiltonian; a kinetic term allowing for tunneling (hopping) of particles
between sites of the lattice of fermions and a potential term consisting of an
on-site interaction. The Hubbard model is a good approximation for particles
in a periodic potential at sufficiently low temperatures. When the lattice sites
consists of bosons, it is called the Bose-Hubbard model. Recently, the BH model
has been used to describe the behavior of ultracold atoms trapped in optical
lattices. A combination of these two models (JC and BH) gives the JCH model
described by the Hamiltonian

Ĥ = ĤJC + Ĥhop (1.3)

where ĤJC is given in Eq. (1.1) and the kinetic term describing the hopping of
the photon is

Ĥhop =
∑
d

td
∑
j

(â†j âj+d + â†j+dâj) (1.4)

The Jaynes–Cummings–Hubbard (JCH) model corresponds to a fundamental
configuration exhibiting the quantum phase transition of light. In such a model,
single two–level atoms are embedded in each cavity, and the dipole interaction
leads to dynamics involving photonic and atomic degrees of freedom.
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In this thesis we, first focus on various properties of the JCH model and pro-
vide two different approximation schemes namely the effective-strong coupling
approximation and the fermionic approximation. Under these approximation
schemes we obtain the analytical results for the critical hopping amplitude lead-
ing to the Mott-insulator [1, 2] to the Superfluid [1] transition. Mott insulator
is a class of materials that are conductors according to the conventional band
theories, but were found to be insulators when measured at low temperatures.
Superfluidity is a state of matter in which the matter behaves like a fluid with-
out viscosity and with infinite thermal conductivity. In this work, we show that
in the strong interaction limit, and near commensurate filling, approximate an-
alytic solutions of the JCH can be found if there is translational invariance, that
is, for an infinite homogenous system or periodic boundary conditions. These
solutions give a good analytic approximation to the full ground-state phase di-
agram. We also apply both the approximation schemes to the simple nearest
neighbor JCH model describing an array of coupled cavities and to the special
case of a linear ion chain.

The outline of the present thesis is as follows: In the second chapter, the main
features of the JCH model have been explained, along with certain other related
quantities which have to be used in the subsequent chapters. First of all the
eigen values and the eigen vectors of the Hamiltonian is found. Then the action
of the photonic creation and annihilation operators â† and â over the eigen states
of the JCH Hamiltonian is explained in detail. Then, the tools for evaluating the
phase boundaries of the MI to SF transition are briefly discussed. The general
expressions for the chemical potential is also given which is used to calculate
the phase boundary. The hopping term of the JCH Hamiltonian is uncoupled in
real space to yield a mean-field Hamiltonian which can be diagonalized leading
to a easy calculation of the phase boundaries.

The third chapter is devoted to introducing two different approximation
schemes both of which give analytic results for the critical hopping amplitude
for the Mott-insulator to Superfluid transition. The first scheme is the effective
strong-coupling model. The energy of the ground state is N = nL and there are
no first order contributions arising from the perturbation theory. So the Hilbert
space per site is one dimensional, consisting of the single state |−〉. The hopping
operator is replaced by the spin operators and hopping term is converted in to
a nearest neighbour spin -spin interaction. Thus the Hamiltonian is written in
terms of the spin opertors and this enables us compute the chemical potential
easily. The second approximation, namely, the Fermionic approximation, the
spin operators are replaced with fermionic operators and a Fourier transfomation
of the resulting Hamiltonian gives a simple expression in the momentum space
which enables a easy calculation of the chemical potential.

The fourth chapter includes the application of both the approximation schemes
to two different systems: (i)the JCHM with positive effective-mass and nearest-
neighbor hopping and (ii) the linear ion chain. Here the analytic results ob-
tained are compared with the numerical results obtained from density-matrix
renormalization group and the mean-field calculations.

We present our conclusions in the final chapter
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Chapter 2

The
Jaynes-Cummings-Hubbard
Model

In this chapter, we review certain features of the Jaynes-Cummings-Hubbard
model described by the Hamiltonian (1.3). We also write down the dressed
basis from the knowledge of the bare basis by solving the eigen value equation.
Finally, we convert the JCH Hamiltonian into a local Hamiltonian incorporating
the effects of interaction through a mean-field.

When the hopping amplitude is zero in equation (1.3), the Hamiltonian ex-
pression can be diagonalized easily, since the sites become independent. Solving
the Schrodinger equation,

Ĥψ = Eψ, (2.1)

where, ψis the column matrix
[
|↑, n− 1〉
|↓, n〉

]
. The state vectors |↑, n− 1〉 and

|↓, n〉 are the bare basis, in which the first part describes the state of the atom
and the second part describes the number of photonic excitations. To construct
the dressed basis, we find the elements of the matrix,

Ĥ =

[
h11 h12

h21 h22

]
. (2.2)

The elments of the matrix (2.2) are found [3] to be:
h11 = 〈↑, n− 1 | H |↑, n− 1〉 = (n− 1)ω + ∆
h12 = 〈↑, n− 1 | H |↓, n〉 = g

√
n,

h21 = 〈↓, n | H |↑, n− 1〉 = g
√
n and

h22 = 〈↓, n | H |↓, n〉 = nω .
Solving the matrix (2.2) for the eigen vectors we obtain the elements of the

dressed basis
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|±, n〉 =
[χn ∓ (ω −∆)] |↑, n− 1〉 ± 2g

√
n |↓, n〉√

2
√
χ2
n ∓ (ω −∆)χn

, (2.3)

≡ α±n |↑, n− 1〉 ± β±n |↓, n〉 , (2.4)

where,
α±n = [χn∓(ω−∆)]√

2
√
χ2
n∓(ω−∆)χn

,

β±n = 2g
√
n√

2
√
χ2
n∓(ω−∆)χn

, and

χn =

√
(∆− ω)

2
+ 4ng2.

From (2.3)we can observe that the atomic and the field modes are entangled
with each other and they are know as the polaritonic states. The eigenvalues of
the polaritonic states are

E±n = nω +
∆− ω

2
± 1

2
χn. (2.5)

It can be seen here that for n = 0, the ground state is degenerate and given
by |−, 0〉 = |↓, 0〉 with E0 = 0. In the limit of strong interaction, that is for
g � |∆− ω|, the energy gap ∆En = E+

n − E−n = χn ∼ 2g
√
n is very large

compared with any other energy scale in the system. Thus, the excited state
|+, n〉 do not contribute to the ground state.

Now in the following discussions, it would be useful to consider the action
of a single bosonic creation or annihilation operator on a given JC eigenstate
|±, n〉. For convenience, we first define certain quantities [4] which would be
very useful:

A±n =

{√
nα±n β

−
n+1 ±

√
n+ 1β±n α

−
n+1, n > 0

α−1 , n = 0
(2.6)

B±n =

{√
nα±n β

+
n+1 ∓

√
n+ 1β±n α

+
n+1, n > 0

−α+
1 , n = 0

(2.7)

C±n =

{√
n− 1α±n β

−
n−1 ±

√
nβ±n α

−
n−1, n > 1

0, n ≤ 1
(2.8)

D±n =

{√
n− 1α±n β

+
n−1 ∓

√
nβ±n α

+
n−1, n > 1

±β±1 δn,1, n ≤ 1
(2.9)

The action of the creation and annihliation operator on the dressed states is
computed below:

â† |+, n〉 = â†
[

(χn−ε)|↑,n−1〉+2g
√
n|↓,n〉√

2
√
χ2
n−εχn

]
,

=
(χn−ε)

√
n|↑,n〉+2g

√
n(n+1)|↓,n+1〉

√
2
√
χ2
n−εχn

,
(2.10)
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where, ∆− ω = ε.

â† |−, n〉 = â†
[

(χn+ε)|↑,n−1〉−2g
√
n|↓,n〉√

2
√
χ2
n+εχn

]
,

=
(χn+ε)

√
n|↑,n〉−2g

√
n(n+1)|↓,n+1〉

√
2
√
χ2
n+εχn

.
(2.11)

Combining equations (2.10) and (2.11), we obtain the action of the creation
operator on the dressed basis vectors

â† |±, n〉 =
(χn ∓ ε)

√
n |↑, n〉 ± 2g

√
n(n+ 1) |↓, n+ 1〉

√
2
√
χ2
n ∓ εχn

. (2.12)

In a similar manner, from the action of the annihilation operator on the dressed
basis vectors, we get

â |+, n〉 = â

[
(χn−ε)|↑,n−1〉+2g

√
n|↓,n〉√

2
√
χ2
n−εχn

]
,

= (χn−ε)
√
n−1|↑,n−2〉+2gn|↓,n−1〉√

2
√
χ2
n−εχn

,
(2.13)

â |−, n〉 = â

[
(χn+ε)|↑,n−1〉−2g

√
n|↓,n〉√

2
√
χ2
n+εχn

]
,

= (χn+ε)
√
n−1|↑,n−2〉−2gn|↓,n−1〉√

2
√
χ2
n+εχn

.
(2.14)

On combining the equations (2.13) and (2.14) the action of the annihilation
operator on the dressed basis is as follows:

â |±, n〉 =
(χn ∓ ε)

√
n− 1 |↑, n− 2〉 ± 2gn |↓, n− 1〉√

2
√
χ2
n ∓ εχn

. (2.15)

Making use of equations (2.6), (2.7), (2.8)and (2.9); the operations â† |±, n〉 and
â |±, n〉 can be written as

â† |±, n〉 = A±n |+, n+ 1〉+B±n |−, n+ 1〉 , (2.16)

â |±, n〉 = C±n |+, n− 1〉+D±n |−, n− 1〉 (2.17)

respectively, which are derived by re-expressing, the equations (2.6), (2.7),
(2.8)and (2.9). The coefficientsA±n andB±n re-expressed considering only then >
0 case is

A±n =
2g
√
n (n+ 1) (χn ∓ ε)± 2g

√
n(n+ 1) (χn+1 + ε)

√
2
√
χ2
n ∓ εχn

√
2
√
χ2
n+1 + εχn+1

,

=
g
√
n (n+ 1) [χn ± χn+1]√

χ2
n ∓ εχn

√
χ2
n+1 + εχn+1

,
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B±n =
2g
√
n (n+ 1) (χn ∓ ε)∓ 2g

√
n(n+ 1) (χn+1 − ε)

√
2
√
χ2
n ∓ εχn

√
2
√
χ2
n+1 − εχn+1

,

=
g
√
n (n+ 1) [χn ∓ χn+1]√

χ2
n ∓ εχn

√
χ2
n+1 − εχn+1

.

Taking into account the n > 1 case, the coeffecients C±n and D±n are re-
expressed as

C±n =
2g(n− 1) (χn ∓ ε)± 2gn (χn−1 + ε)
√

2
√
χ2
n ∓ εχn

√
2
√
χ2
n−1 − εχn−1

,

=
g [(n− 1)χn ± nχn−1 ± ε]√
χ2
n ∓ εχn

√
χ2
n−1 + εχn−1

,

D±n =
2g(n− 1) (χn ∓ ε)∓ 2gn (χn−1 − ε)
√

2
√
χ2
n ∓ εχn

√
2
√
χ2
n−1 − εχn−1

,

=
g [(n− 1)χn ∓ nχn−1 ∓ ε]√
χ2
n ∓ εχn

√
χ2
n−1 − εχn−1

,

From equation (2.3), the states are written as follows:

|+, n+ 1〉 =
(χn+1 − ε) |↑, n〉+ 2g

√
n+ 1 |↓, n+ 1〉

√
2
√
χ2
n+1 − εχn+1

, (2.18)

|−, n+ 1〉 =
(χn+1 + ε) |↑, n〉 − 2g

√
n+ 1 |↓, n+ 1〉

√
2
√
χ2
n+1 + εχn+1

. (2.19)

Note here that χ2
n+1 = ε2 + 4(n+ 1)g2 and

√
χ2
n−1 − ε2 = 2g

√
n− 1.

In order to calculate the phase boundaries of the Mott-insulating lobes for
the JCH model we will consider the system as comprising a fixed number of
excitations, since the total number of excitations,

N̂ =
∑
j

(â†j âj + σ̂+
j σ̂
−
j ) (2.20)

in the system commutes with the full Hamiltonian; (1.3) i.e.
[
N̂ , Ĥ

]
= 0. We

use the idea that the boundary of the nth lobe can be determined by calculating
the total energy E(N) for N = nL − 1,N = nL and N = nL + 1 excitaions in
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the system which have L sites in it. Denoting the upper boundary of the nth
Mott lobe with µ+

n and the lower boundary with µ−n , we can write:

µ±n = ±[E(nL± 1)− E(nL)]. (2.21)

For td = 0, µ±n can be calculated without much difficulty. It should be noted here
thatn is the the number of polaritons on a single site, N , the number of polari-
tons on the entire lattice, and L, the number of lattice sites available. It can be
seen that, for a commensurate number of excitations, due to the non-linear de-
pendence of the single site energy E−n on n, the excitations will distribute equally
over the entire lattice. Then the ground state is give by −→n = (n, n, n, ......, n).
Now, when adding a single excitation to the whole system, the ground state is
given by {n+ 1, n, n, ......, n}, and when removing a single excitation from the
whole system, the gound state is given by{n− 1, n, n, ......, n}. Note that since
we are interested only in the energy of the system which is homogenous, the
degeneracy of the state has been ignored. Under these conditions, the energies
can be written as:

E(nL− 1) = (L− 1)E−n + E−n−1, (2.22)

E(nL) = LE−n , (2.23)

E(nL+ 1) = (L− 1)E−n + E−n+1. (2.24)

The chemical potential µ+
n is given by:

µ+
n = E−n+1 − E−n , (2.25)

which corresponds to:

µ+
n = ω − χn+1

2
+ (1− δn,0)

χn
2

+ δn,0
∆− ω

2
, (2.26)

for any n. Noting here that µ+
n can also be written as:

µ+
n = ω − χn+1

2
+
χn
2
. (2.27)

In a similar manner, the expressions for µ−n can be written as:

µ−n = E−n − E−n−1, (2.28)

which means that:

µ−n = ω − χn
2

+ (1− δn,1)
χn−1

2
+ δn,1

∆− ω
2

, (2.29)

for n > 0.
For a commensurate number of excitations, the system exhibit particle-hole

gaps. Since µ−n+1 = µ+
n , the chemical potential for non-commensurate total
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number of excitations between N = nL and N = (n + 1)L is the same. This
corresponds to a critical point [4]. If there is non-zero tunneling, the critical
points extend to critical regions.

The next aim is to obtain a phase diagram for this phase transition using
some numerical methods. The simplest available one is the so called mean-field
theory. For the effective implementation of the mean-field theory, an order pa-
rameter Ψ. This order parameter is chosen to be homogenous and real valued in
our case. The hopping term can be decoupled using a transformation involving
the order parameter, as shown below:

â†j âl 7−→ Ψ(â†j + âl). (2.30)

Using the transformaton (2.30), we get

∑
j

(â†j âj+d + â†j+dâj) =
∑
j

[
(Ψ(â†j + âj+d)− | Ψ |2 +Ψ(â†j+d + âj)− | Ψ |2

]
.

(2.31)
Substituting (2.31) in the Hamiltonian (1.3), we observe that it uncouples

in the real space as a local Hamiltonian.

ĤMF = (ω−µ)â†â+ (∆−µ)σ̂+σ̂−+ g(â†σ̂−+ âσ̂+)− 2J̃Ψ(â†+ â) + 2J̃ | Ψ |2,
(2.32)

where ĤMF = ĤJCH − µN̂ and the modified hopping amplitude J̃ = −
∑
d

td

gives the effective coupling within the mean-field scheme. The phase diagram
can now be found by diagonalizing the mean-field Hamiltonian (2.32). The
diagonalization can be done either exactly by means of perturbation theory
or numerically, setting an upper bound for the maximal number of bosonic
excitations in the system.

The ground state energy is then given by minΨE[Ψ]. The Mott Insulator is
distinguished from the Supefluid by the value of Ψ for the minimal energy. For
Ψ = 0, the system is in a Mott-insulating state and for Ψ > 0, the ground state
is a superfluid. This is the condition that sets the point of the transition from
Mott-insulator to the Superfluid state. The important point to note here is that
this method gives inadequate results in one-dimension but is exact when the
dimension goes to infinity. Also it should be mentioned here that the effective
hopping J̃ must be larger than zero to yield useful results.
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Chapter 3

Approximative Determination
of the Phase Boundaries

In the present chapter, we introduce two different approximation schemes. In
the first scheme, namely, effective strong-coupling model, the effective Hamilto-
nian in the limit of a strong coupling between the photonic and atomic modes
is calculated. Then the chemical potentials in the upper and lower boundaries
of the nth Mott lobe is calculated. In the second scheme, namely, the fermionic
approximation, the spin operators are re-written in terms of the fermionic oper-
ators, which in turn, smoothens the Fourier transformation of the Hamiltonian
and lead to the easy calculation of the phase boundaries.

3.1 Effective Strong-Coupling Model:
In the present section, the aim is to derive the effective Hamiltonian in the
strong-coupling limit and thereby the chemical potentials in the upper and lower
boundaries of the nth Mott lobe can be calculated. With this, the particle-hole
gap can be calculcated upto first order of the hopping amplitudes td. To do so we
employ a procedure equivalent to the polariton mapping discussed below. The
procedure is called degenerate perturbation theory and uses Kato’s expansion up
to first order with Heff = PVP. This procedure is equivalent to the polariton
mapping considered in [5]. First of all, it is useful to note that the state |+, n〉is
separated from the ground state by a large energy gap |−, n〉. Hence, |+, n〉
can be completely ignored in the present section. Now we look at the energy
of the ground state with N = nL, from the perturbation theory, no first-order
contributions are present. So the Hilbert space per site is one dimensional,
consisting of the single state |−, n〉. Thus, up to first order, the energy is given
by E(nL) = LE−n . When adding an excitation, the local Hilbert space increases;
now (locally), the two states |−, n〉and |−, n+ 1〉need to be taken into account.
So, in this limit, the system for an additional particle can be understood as one
consisting of effective spin-half particles. For simplicity, we identify the state
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|−, n〉 with the state |⇓〉and the state |−, n+ 1〉with the state |⇑〉. In order to
derive the effective spin-half model, we have to investigate the action of the
hopping operator â†j+1âj on the states in the Hilbert space.

Using equations (2.6) to (2.9) and neglecting the contributions from the
states |+, n〉 and |+, n+ 1〉, the action of the hopping operator â†j+1âj can be
found as follows:

â†j+1âj |⇓〉j+1 |⇑〉j = â†j+1 |⇓〉j+1 âj |⇑〉j ,

= â†j+1 |−, n〉j+1 âj |−, n+ 1〉j ,

=
[
A−n |+, n+ 1〉j+1 +B−n |−, n+ 1〉j+1

]
[
C−n+1 |+, n〉j +D−n+1 |−, n〉j

]
,

= B−n |−, n+ 1〉j+1D
−
n+1 |−, n〉j ,

= B−nD
−
n+1 |−, n+ 1〉j+1 |−, n〉j .

Hence we get

â†j+1âj |⇓〉j+1 |⇑〉j = B−nD
−
n+1 |⇑〉j+1 |⇓〉j (3.1)

within the considered subspace. This expression can be developed by defining
a new general operator, called the polariton operator:

P †j,[±,n] = |±, n 〉j〈−, 0|j ,

from which we get the expression:

P †±nP±n = |±, n 〉j〈±, n|j .

We can see that for our case:

σ̂+
j = P †j,[−,(n+1)]Pj,[−,n] = |−, (n+ 1) 〉j〈−, n|j = |⇑〉j 〈⇓|j ,

and

σ̂−j = P †j,[−,n]Pj,[−,(n+1)] = |−, n 〉j〈−, (n+ 1)|j = |⇓〉j 〈⇑|j .

Using the above equations , we can readily write: σ̂+
j |⇓〉j = |⇑〉j and σ̂

−
j |⇑〉j =

|⇓〉j . Then;

B−nD
−
n+1 |⇑〉j+1 |⇓〉j = B−nD

−
n+1σ̂

+
j+1 |⇓〉j+1 σ̂

−
j |⇑〉j = B−nD

−
n+1σ̂

+
j+1σ̂

−
j |⇓〉j+1 |⇑〉j .

Therefore, by introducing the spin operators σ̂±j , we got the hopping term which
is equivalent to a nearest neighbor spin-spin interaction with;

â†j+1âj = B−nD
−
n+1σ̂

+
j+1σ̂j

−. (3.2)
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Using the Expression ,

ĤJC − µN̂ = (ω − µ)
∑
j

â†j âj + (∆− µ)
∑
j

σ̂†j σ̂
−
j + g

∑
j

(σ̂†j âj + â†j σ̂
−
j ), (3.3)

and substituting for σ̂+
j σ̂j

− and σ̂−j σ̂j
+ the Hamiltonian (3.3) could be writ-

ten as follows:

(
ĤJC − µN̂

)
|−, n〉j =

∑
j

Eµ−.n |−, n〉j ,

=
∑
j

Eµ−.n |−, n〉j 〈−, n|j |−, n〉j ,

=
∑
j

Eµ−.nP
†
j,[−,n]Pj,[−,n] |−, n〉j ,(

ĤJC − µN̂
)
|−, n〉j =

∑
j

Eµ−.nP
†
j,[−,n]Pj,[−,n] |−, n〉j .

Proceeding in a similar manner, it could be shown that:

(
ĤJC − µN̂

)
|−, (n+ 1)〉j =

∑
j

Eµ−.(n+1)P
†
j,[−,(n+1)]Pj,[−,(n+1)] |−, (n+ 1)〉j .

Thus the effective Hamiltonian in the strong coupling limit reads:

H̃ = ĤJC − µN̂ +Hhop,

H̃ =
∑
j

E−n P
†
j,[−,n]Pj,[−,n] +

∑
j

E−n+1P
†
j,[−,(n+1)]Pj,[−,(n+1)]

+
∑
d

td
∑
j

(â†j âj+d + â†j+dâj).
(3.4)

Rewriting the above equation (3.4) in terms of the effective spin operators
the Hamiltonian is

H̃ = E−n
∑
j

σ̃−j σ̃
+
j + E−n+1

∑
j

σ̃+
j σ̃
−
j +B−nD

−
n+1

∑
d

td
∑
j

(
σ̃+
j+dσ̃

−
j + σ̃+

j σ̃
−
j+d

)
.

(3.5)
The first two terms of the RHS of the above equation (3.5) can be rewritten by
making use of the relations;

σ̂+
j σ̂j

− + σ̂−j σ̂j
+ = 1̂ ,

∑
j

(
σ̂+
j σ̂j

− + σ̂−j σ̂j
+
)

= L1̂ as;

13



E−n
∑
j

σ̃−j σ̃
+
j + E−n+1

∑
j

σ̃+
j σ̃
−
j = E−n

L1̂−
∑
j

σ̃+
j σ̃
−
j

+ E−n+1

∑
j

σ̃+
j σ̃
−
j ,

=
(
E−n+1 − E−n

)∑
j

σ̃+
j σ̃
−
j + E−n L,

from which, we can readily write

E−n∑
j

σ̃−j σ̃
+
j + E−n+1

∑
j

σ̃+
j σ̃
−
j

∑
j

σ̃+
j σ̃
−
j =

[
(L− 1)E−n + E−n+1

]∑
j

σ̃+
j σ̃
−
j ,

which give us the expression

E−n
∑
j

σ̃−j σ̃
+
j + E−n+1

∑
j

σ̃+
j σ̃
−
j = (L− 1)E−n + E−n+1,

since ∑
j

σ̃+
j σ̃
−
j σ̃

+
j σ̃
−
j =

∑
j

σ̃+
j σ̃
−
j .

Thus we get,

H̃ = (L− 1)E−n + E−n+1 +B−nD
−
n+1

∑
d

td
∑
j

(
σ̃+
j+dσ̃

−
j + σ̃+

j σ̃
−
j+d

)
(3.6)

since we are at fixed magnetization with only one spin pointing upward. This
Hamiltonian can be further simplified, by using a Jordan-Wigner transformation
defined by

j−1∏
k=1

(−σ̃zk) σ̃+
j = ĉ†j and

j−1∏
k=1

(−σ̃zk) σ̃−j = ĉj ,

where,
σzk = 2σ+

k σ
−
k − 1̂.

A few words about the Jordan-Wigner transformation is relevent in this dis-
cussion because of its relation to quantum computation. Jordan-Wigner trans-
formation is a beautiful application of the fermionic canonical commutation
relations. This powerful tool helps us to map a system of interacting qubits
onto an equivalent system of interacting fermions, or, vice versa, to map a sys-
tem of fermions onto a system of qubits. This mapping is interesting because it
means that anything we understand about one type of system (e.g., Fermions)
can be immediately applied to learn something about the other type of system
(e.g.,qubits). Also, this transformation can be applied in quantum simulation of

14



a system of fermions. In particular, this transformation allows us to map a sys-
tem of interacting fermions onto an equivalent model of interacting spins, which
can then, in principle, be simulated using standard techniques on a quantum
computer. This enables us to use quantum computers to efficiently simulate sys-
tems of interacting fermions. Here it is interesting to note that a non-interacting
gas of fermions is still highly correlated since the exclusion principle introduces
a hard-core interaction between fermions in the same quantum state, and this
is the feature exploited in the Jordan-Wigner representation of spins.

Now using the Jordan-Wigner transformation and the relation connecting
σzj and σ±j , we can see that:

ĉ†j+dĉj + ĉ†j ĉj+d =
j+d−1∏
k=1

σ̃zkσ̃
+
j+d

j−1∏
k=1

σ̃zkσ̃
−
j +

j−1∏
k=1

σ̃zkσ̃
+
j

j+d−1∏
k=1

σ̃zkσ̃
−
j+d.

But, since σzj = 2σ+
j σ
−
j − 1̂, we can write;

j−1∏
k=1

(σ̃zk) σ̃+
j+d =

j−1∏
k=1

(
2σ̃+

k σ̃
−
k − 1̂

)
σ̃+
j+d,

=
j−1∏
k=1

2σ̃+
k σ̃
−
k σ̃

+
j+d − σ̃

+
j+d,

= 2
j+d−1∏
k=1

|−, n+ 1 〉k〈−, n+ 1|k |−, n+ 1 〉j+d〈−, n|j+d − σ
+
j+d.

Here, the first term goes to zero as k is always less than j + d. Hence,

j+d−1∏
k=1

(σ̃zk) σ̃+
j = −σ+

j+d.

Similarly we get,

j−1∏
k=1

(σ̃zk) σ̃+
j = −σ+

j ,

j−1∏
k=1

(σ̃zk) σ̃−j = σ−j ,

and
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j+d−1∏
k=1

(σ̃zk) σ̃−j = σ−j+d.

Then we obtain, ĉ†j+dĉj + ĉ†j ĉj+d = σ+
j+dσ

−
j + σ−j σ

−
j+d, so that the effective

Hamiltonian H̃ becomes

H̃ = (L− 1)E−n + E−n+1 +B−nD
−
n+1

∑
d

td
∑
j

(
ĉ†j+dĉj + ĉ†j ĉj+d

)
.

Performing a Fourier transformation on the above equation:

ĉj =
1√
L

∑
k

e−2πikj/Lĉk, (3.7)

we see that the ground-state wave function factorizes since the Hamiltonian
decouples in momentum space.

H̃ = (L− 1)E−n + E−n+1 + 2B−nD
−
n+1

∑
d

td
∑
k

cos

(
2π
kd

L

)
ĉ†k ĉk. (3.8)

This model is equivalent to free fermionic particles with hopping amplitude
given by td. In momentum space, a single fermion will occupy the mode with
the lowest energy. Thus the total energy of the single particle and therefore the
total energy of an additional excitation on top of the nth Mott insulator in the
JCH model is given by:

E(nL+ 1) = (L− 1)E−n + E−n+1 + Fn (k′) , (3.9)

where,

Fn (k) = 2B−nD
−
n+1

∑
d

tdcos

(
2π
kd

L

)
. (3.10)

Here, the momentum mode k′is chosen such that the value of Fn (k)at k′ is
minimal. It should be mentioned here that the product B−nD

−
n+1 is positive for

any (∆, ω, n), so the momentum mode is purely determined by the minimum of∑
d

tdcos
(
2π kdL

)
.

To calculate the energy for a hole in the nthMott insulator, we follow exactly
the same route. In this case, the state |⇓〉 is associated with |−, n− 1〉 and |⇑〉
with |−, n〉. The hopping operator act as:

â†j+1âj |⇓〉j+1 |⇑〉j = B−n−1D
−
n |⇑〉j+1 |⇓〉j , (3.11)

and the effective Hamiltonian is given by:
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H̃ = E−n−1

∑
j

σ̃−j σ̃
+
j + E−n

∑
j

σ̃+
j σ̃
−
j +B−n−1D

−
n

∑
d

td
∑
j

(
σ̃+
j+dσ̃

−
j + σ̃+

j σ̃
−
j+d

)
.

(3.12)
Here, the magnetization consists of one spin pointing downward. Again, after
making use of a Jordan-Wigner transformation, and subsequently, a Fourier
transformation, the energy of a single hole is given by:

E(nL− 1) = (L− 1)E−n + E−n−1 + Fn−1 (k′′) , (3.13)

where the same condition holds for k′′. Now putting the calculated energies
(3.9) and (3.13) together, the chemical potentials and therefore the boundaries
of the nth Mott-insulating lobe can be easily derived.. They are given by:

µ+
n = E−n+1 − E−n + 2B−nD

−
n+1

∑
d

tdcos

(
2π
k′d

L

)
, (3.14)

µ−n = E−n − E−n−1 − 2B−n−1D
−
n

∑
d

tdcos

(
2π
k′′d

L

)
, (3.15)

where k′ is chosen such that µ+
n (k′) is minimal and k′′ is chosen such that

µ−n (k′′) is maximal.

3.2 Fermion Approximation:
This section is devoted for the application of an even simpler approximation.
It is clear to see that all the terms in the equation (1.3) are quadratic. These
kinds of models are in general suited for an exact solution by means of a Fourier
transform. The problem at this point is, however, that the commutation rela-
tions of spin operator σ±j are not as simple as that of bosons or fermions. This
limits the applicability of a fourier transform since the operators in momentum
space will not obey the same commutation relation as in real space. The usual
step of a prior Jordan-Wigner transformation, transforming the spin operators
to proper fermionic operators, is not applicable in this case since the interaction
part is linear in the spin operators, so the Jordan-Wigner factors do not cancel
out. Thus both transformations cannot be carried out exactly without increas-
ing the descriptional complexity of the problem. Neverthless, the Hamiltonian
can be diagonalized by a Fourier transform in an approximate way.

As said earlier, all modes decouple at td = 0. For this reason, the spin
operators are in this limit equivalent to fermionic operators. If we assume that
this replacement also holds for small values of td, the JCH model (1.3) can be
rewritten in the fermionic approximation:

Ĥ = ω
∑
j

â†j âj + ∆
∑
j

ĉ†j ĉj + g
∑
j

(ĉ†j âj + â†j ĉj) +
∑
d

td
∑
j

(
â†j âj+d + â†j+dâj

)
.

(3.16)
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Here, the spin operators are replaced by fermionic operators as discuss in the
earlier section. Within this approximation, a fourier transform of both the
bosonic and fermionic degrees of freedom can be easily accomplished as:

âj =
1√
L

∑
k

e−2πikj/Lâk, (3.17)

ĉj =
1√
L

∑
k

e−2πikj/Lĉk. (3.18)

Here the operators âk and ĉk are operators in the momentum space. Doing
so, the JCH Hamiltonian transforms to that of uncoupled Jaynes-Cummings
systems,

Ĥ =
∑
k

ωkâ
†
kâk + ∆

∑
k

ĉ†k ĉk + g
∑
k

(ĉ†kâk + â†k ĉk), (3.19)

with,

ωk = ω + 2
∑
d

tdcos

(
2π
kd

L

)
. (3.20)

The ground state in any mode is given by the Jaynes-Cummungs ground state
(2.3) with frequency ωk. The energy of mode k with nexcitations is given by:

Enk = (1− δn,0)

[
nωk +

∆− ωk
2

− 1

2

√
(∆− ωk)

2
+ 4ng2

]
. (3.21)

Since the total number of excitations,

N̂ =
∑
j

(â†j âj + σ̂+
j σ̂
−
j ) 7→

∑
k

(â†kâk + ĉ†k ĉk), (3.22)

commutes with the Hamiltonian (3.19), a common basis can be chosen. Thus the
full solution of equation (3.19) for a fixed total number of excitations N = nL
is given by the distribution −→n = {nk1 , nk2 , nk3 , .....} of N excitations on L
momentum modes with minimal energy EN [−→n ] =

∑
k E

nk

k together with the
constraint

∑
k nk ≡ N . Note that the total number of momentum modes L is

equal to the number of sites.
When constructing the phase diagram, the energy of N = nL− 1, N = nL,

and N = nL + 1 excitations needs to be calculated. In the limit of vanishing
hopping (t = 0) and for commensurate filling, i.e., N = nL, the distribution of
occupation numbers, which has the lowest energy, is again −→n = {n, n, ....., n}.
This corresponds to a Mott-insulating state with an integer number of exci-
tations on every lattice sites. The phase is gapped with a particle-hole gap,
as described in the previous chapter. When t is increased, the ground state
remains the same, But the gap closes and a quantum phase transition occurs
from the Mott-insulating to the Superfluid phase at some critical value of t.The
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only remaining thing in order to calculate the chemical potentials is to find the
momentum mode, where the addition of an excitation gives the maximum re-
duction in the total energy and the removal of an excitation gives the minimum
increase in the total energy. This yields:

µ+
n = En+1

k′ − E
n
k′, (3.23)

µ−n = Enk − En−1
k , (3.24)

where k′ is chosen such that µ+
n (k′) is minimal and k is chosen such that µ−n (k)

is maximal. The actual values of k and k′ depend mainly on the sign of the
hopping amplitudes td.
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Chapter 4

Application of to Specific
Realizations of the JCH
Model

In this chapter we use the two approximation schemes explained in Chapter 3
to two systems namely a JCH model with positive effective mass with nearest
neighbor hopping and to another modified model describing the physics of a
linear ion chain. The first case the simple JCH where the hopping is restricted
to nearest neighbors, essentially serves as a testing ground for our approxima-
tion schemes, including a comparison of the analytical results to numerical data
from density-matrix renormalization group (DMRG) and mean-field calcula-
tions. Later on, the generalized JCH where the hopping term is not restricted
will be treated by both approximations giving analytic results for the phase
diagram in a wide range of parameters.

4.1 JCH with Positive Effective-mass and Near-
est Neighbor Hopping:

In this section, we apply both the approximation schemes to a system namely,
JCH with positive effective-mass and nearest neighbor hopping [4]. For each
approximation, the chemical potentials µ+

n and µ−n are calculated. The results
are plotted in the figure (4.1).

In the current subsection, the dicussion is based on the case where d = 1,
ω = ∆, td = −tδn,1 V

∑
d

td = −t, and hence χn = 2g
√
n. The Hamiltonian

(1.3) becomes:
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Ĥ = ω
∑
j

â†j âj + ∆
∑
j

σ̂+
j σ̂
−
j + g

∑
j

(σ̂+
j âj + â†j σ̂

−
j )− t

∑
j

(
â†j âj+1 + â†j+1âj

)
.

(4.1)
Again, for calculating the phase boundaries of the Mott lobes, we need to find
the chemical potentials. For this, we first have to determine the momentum
modes k′ and k′′, which contribute to the energy. For ω = ∆, the coefficients in
the equation (2.3) are;

α±n =
1√
2

= β±n ,

and therefore,

B−n = D−n+1 =

{√
n+
√
n+1

2 , n > 0

− 1√
2
, n = 0

. (4.2)

With this, the function Fn (k) is given by

Fn (k) = −t
(√
n+
√
n+ 1

)2
2− δn,0

cos

(
2π
k

L

)
. (4.3)

A good observation tells us that the chemical potential have its minimum at
k = 0 , since at this point,

µ+
n = E−n+1 − E−n − t

(√
n+
√
n+ 1

)2
2− δn,0

,

and also using, E−n+1 − E−n = ω − χn+1

2 + (1 − δn,0)χn

2 + δn,0
∆−ω

2 from the
equation (2.26), it can be immediately written that

µ+
n = ω − 1

2
χn+1 +

1− δn,0
2

χn − t
(√
n+
√
n+ 1

)2
2− δn,0

, (4.4)

for any n. In an exactly similar way, we see that the chemical potential has its
maximum at k = L

2 , since at this point,

µ−n = E−n − E−n−1 + t

(√
n+
√
n+ 1

)2
2− δn,0

.

Now using, E−n −E−n−1 = ω− χn

2 + (1− δn,1)χn−1

2 + δn,1
∆−ω

2 from the equation
(2.29), it can be seen that;

µ−n = ω − 1

2
χn +

1− δn,1
2

χn−1 + t

(√
n+
√
n− 1

)2
2− δn,1

, (4.5)

for any n > 0.
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Remember here the conditions imposed initially in this section : d = 1,
ω = ∆, and td = −tδn,1 V

∑
d

td = −t. This allows us to determine the critical

amplitude tcrit,where µ+
n = µ−n . Substituting for µ+

n , µ
−
n ; and simplifying by

taking into account the fact that χn+1 V 2g
√
n+ 1, χn V 2g

√
n and χn−1 V

2g
√
n− 1; we obtain:

tcrit
g

= 2
2
√
n−
√
n+ 1−

√
n− 1(√

n+
√
n+ 1

)2
+
(√

n+ δn,1 +
√
n− 1

)2 . (4.6)

Now we apply the second approximation to the same model. With the given
system parameters, the momentum-dependent phonon energies from equation
(3.20) are given by;

ωk = ω − 2tcos

(
2π
k

L

)
, (4.7)

and the energy in the kth momentum mode, [see equation (3.21) for a given
filling n read as:

Enk = (1− δn,0)

[
nω − 2ntcos

(
2π
k

L

)
+ tcos

(
2π
k

L

)
−

√
t2cos2

(
2π
k

L

)
+ ng2

]
.

(4.8)
Finally, following equations (3.23) and (3.24), the momentum mode k′ which
minimizes the chemical potential and the momentum mode k′′ which maximizes
the chemical potential need to be found out. In the present case, these are k′ = 0
and k = L

2 respectively. Thus the resulting chemical potentials are

µ+
n − ω = −2t+ tδn,0 −

√
t2 + (n+ 1)g2 + (1− δn,0)

√
t2 + ng2, (4.9)

for any n, and

µ−n − ω = 2t− tδn,1 −
√
t2 + ng2 + (1− δn,1)

√
t2 + (n− 1)g2, (4.10)

for any n > 0. For this approximation too, a closed form for the critical ampli-
tude can be found which is omitted here due to its length.

Now, we may compare the analytical results with various numerical cal-
culations. The following figure shows both analytic approximations along with
numerical data from Density-matrix renormalization group (DMRG) and mean-
field calculations, where the modified hopping amplitude in the mean-field Hamil-
tonian (2.32) evaluates as J̃ = t. The DMRG is a numerical variational tech-
nique devised to obtain the low energy physics of quantum many-body systems
with high accuracy. It is nowadays the most efficient method for 1-dimensional
systems.

From the figure (4.1), it can be seen that the effective model gives a much
better agreement with the numerical DMRG [6, 7] data, especially, the slopes
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Figure 4.1: Comparison of ground state phase diagram of the ID JCH Model
(4.1) obtained by DMRG as well as mean-field results (dot-dashed line) with
the prediction from the present approach (solid line: strong coupling effective
Hamiltonian; dashed line: fermion approximation) for ∆ = ω = g = 1. Tking
into account the simplicity of both the approaches, the agreement with the
DMRG data is rather good while the mean-field predictions are rather poor,
as expected for 1D systems. The critical hopping amplitudes estimated from
the DMRG data agree surprisingly well with those predicted within the fermion
approximation, although the shape of the Mott lobe is different.

of the lobes agree perfectly at small hopping. The fermion approximation over
estimates the size of the Mott lobe. In particular, while the lower boundaries
are rather well reproduced, the upper bboundaries have the wrong slope. Sur-
prisingly though the critical hopping amplitudes seem to agree better with the
DMRG data than the results obtained from the effective strong-coupling Hamil-
tonians. Although the fermion approximation is quantitatively worse than the
effective strong-coupling Hamiltonians, it provides a simple approximative solu-
tion to the JCH beyond the mean-field level, which has the advantage of giving
a closed form of the ground state.

4.2 Linear Ion Chain:
Now, let us consider a linear string of ions in a trap [8], where the ions are cou-
pled to an external laser field and interact with each other due to the coulomb
repulsion via phonon exchange [4]. This system is well described by a modified
JCH model with a specific short range hopping with negative effective-mass and
site-dependent parameters. First, we will introduce the model and give a deriva-
tion of the corresponding homogenous limit. Afterwards, we will apply both the
approximations and discuss the phase boundaries within these approximations,
giving expplicit analytic results for them.

The Hamiltonian of a linear string of L ions simultaneously irradiated by
a laser, which is tuned close to the red radial motional sideband and in the
Lamb-Dicke regime,as shown in [9] is given by
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Figure 4.2: Energies of the JCH Hamiltonianfor fixed filling n as function of
momentum k. Shown are the energies from equation 2.4 for the five lowest
fillings 0,...,4 (from top to bottom) for ∆ = 0 and g = 1. Solid lines: t/g = 0.02;
dashed lines: t/g = 0.2. One clearly recognizes the minimum at k = L/2 and
the flat dispersion for t/g → 0.

Ĥ =
L−1∑
j

ωj â
†
j âj + ∆

∑
j

σ̂+
j σ̂
−
j + g

∑
j

(σ̂+
j âj + â†j σ̂

−
j )

+t
L−2∑
j=0

L−j−1∑
d=0

tj,j+d

(
â†j+dâj + â†j âj+d

)
.

(4.11)

Here, â†j and âj describe the creation and annihilation of a local phonon at
the jth site (ion), σ̂+

j and σ̂−j are the raising and lowering operators between
the internal states of the ion, and ∆ is the detuning of the external laser field
from the red motional sideband. g describes the phonon-ion coupling in the
Lamb-Dicke limit.

The local oscillation frequencies ωj and the hopping amplitudes tj,j+d are
determined by the longitudinal and transversal trap frequencies ωz and ωx via

ωj = − ω2
z

2ωx

L−1∑
l=0

l 6=j

1

| uj − ul |3
, tj,j+d =

ω2
z

2ωx

1

| uj − ud |3
, (4.12)

where uj are the equilibrium positions of the ions. For sufficiently large L, the
equilibrium positions of the ions at the centre are approximately equidistant,
giving uj = jũ, with ũ being the distance of two adjascent ions.

24



Let us now discuss the limit of a homogenous chain neglecting any bound-
ary effect. In this limit, equation (4.12) can be rewritten for L → ∞,yielding
position-independent phonon energies ωj ≡ −ω and hopping amplitudes tj,j+d ≡
td,

td =
ω2
z

2ωxũ3

1

d3
= t

1

d3
, (4.13)

ω = 2
ω2
z

2ωxũ3
ζ (3) = 2tζ (3) , (4.14)

where t =
ω2

z

2ωxũ3 acts as a small parameter and ω > 0. ζ (x) is the Riemann
zeta function defined by:

ζ (p) =

∞∑
n=1

1

np
,

for p > 1.
One notices a negative oscillator energy −ω and a negative effective-mass,

which is a result of the positive hopping strength t. This negative mass is the
reason why the application of the mean-field theory is not that straight for-
ward. When simply calculating the modified hopping amplitude J̃ = −t

∑
d

1
d3 =

−tζ (3),the hopping becomes negative and, therefore, the mean-field theory is
inapplicable. This problem can be overcame by first applying a canonical trans-
formation to all used operators. The transformation:

âj 7→ (−1)
j
âj , (4.15)

for the annihilation operator and accordingly to all the other operators â†j , σ̂
±
j ,

maps the JCH model(1.3) back onto itself, but with td 7→ (−1)
d
td. After this

transformation, the modified hopping evaluates to J̃ = −t
∑
d

(−1)d

d3 = 3tζ (3) /4
being positive. Now the application of the mean-field theory is stright foreward.

After having introdced the homogenous limit of the model, both the approx-
imations introduced in the previous chapter will be applied. Starting with the
effective strong-coupling theory; the first approximation, the chemical poten-
tials for the upper and the lower boundaries of the lobes are given by equations
(3.14) and (3.15). The proper momentum modes k′, which minimizes the chem-
ical potential and the modes k′′, which maximizes the chemical potential are,
as alredy found, k = L/2. This results from the negative mass. Due to the
complexity of the problem, especially the analytic form of B−n and D−n , analytic
representation of the chemical potentials are left out here. They can be found
straight forwardly just as in the case of the simple JCH model.

When following the second approximative method, i.e., the fermionic ap-
proximation scheme, the Hamiltonian for the uncoupled JC models is given by
equation (3.19), with the phonon energies being
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Figure 4.3: Phase diagram of the JCH model for a linear ion chain for three
depicted values ∆/g = −0.8, 0,+0.8. Shown are the upper boundary of the zero
filling lobe (always lowest line) and the boundaries of the lobes with filling from 1
to 5 on a double-logarithemic scale. Beside the used approximations (solid line:
fermion approximation; crosses: first order effective theory), the results from
the mean-field theory (dot-dashed line) after the canonical transformation are
shown. It can be seen that the fermionic approximation again over-estimates the
phase boundry (compared to the more reliable effective strong-couping theory)
but gives a better agreement compared to the mean-field theory (mind the
logarithm scale).

Figure 4.4: Phase diagram of the JCH model for a linear ion chain from the
fermion approximation. Boundaries of the Mott-insulating lobes (from bottom
to top) for n = 2, 3, 4. The lobes n = 0 and n = 1 are not displayed since they
are unbound for ∆→ −∞.
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Figure 4.5: Critical hopping amplitude tcritn (∆), giving the point where the
Mott-insulator to superfluid transition takes place. From top to bottom: n =
1, ....., 8, all for g = 0.05.

ωk = −ω + 2t
∑
d

cos
(
2π kdL

)
d3

, (4.16)

according to equation (3.20). Note that, since ω = 2tζ (3), all ωk ’s are negative.
Using the poly logarithm Lin (x) =

∑∞
d=1

xd

dn , one can write them in the explicit
form

ωk = t
[
Li3

(
e2πik/L

)
+ Li3

(
e−2πik/L

)
− 2tζ (3)

]
. (4.17)

The minimum value of ωk = −7tζ (3) /2 is attained for k = L
2 ,as expected from

the positive sign of the hopping term. The energies for each momentum mode
are given by the solution (3.21) of the JC model and the corresponding spectrum
is shown in the figure (4.2).

From the knowledge of the dispersion relation for different fillings, it is now
easy to construct the phase diagram. As dicussed in the fermionic approximation
scheme, the flat dispersion for t = 0 leads to the ground state having an equal
number of excitations in every momentum mode k. The chemical potentials for
t > 0 are then determined by the k′ and k values, minimizing or maximizing
equations (3.23)and (3.24). When looking at the dispersion in figure (4.2), one
recognizes that this is given for k′ = L/2 and k = 0. So, the chemical potentials
are given by:

µ+
n = En+1

L/2 − E
n
L/2, (4.18)
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µ−n = En0 − En−1
0 , (4.19)

and when using the analytic form, that is, equations (3.21)and (4.17), the phase
boundaries of the nth Mott lobe read as

µ+
n = 1

2

{
−
√

4(n+ 1)g2 +
[

7
2ζ (3) t+ ∆

]2 − 7
1+δn,0

ζ (3) t+ δn,0∆

+(1− δn,0)

√
4ng2 +

[
7
2ζ (3) t+ ∆

]2}
,

(4.20)

and

µ−n =
1− δn,1

2

√
4 (n− 1) g2 + ∆2 − 1

2

√
4ng2 + ∆2 +

δn,1
2

∆. (4.21)

Figure (4.3) shows the resulting phase diagram for three values of ∆ com-
paring the different approaches. One recognizes the typical lobe structure of
the Mott-insulating phases with a closing of the lobes at some value tcritn (∆).
While the mean-field results underestimate the extent of the Mott-insulator re-
gions, our fermionic approach overestimates them but with a better agreement
with the first order effective strong-coupling model compared to the mean-field
solution. The main advantage of the fermionic approximation is the easy closed
form for the chemical potentials as well as for the ground state and more rea-
sonable agreement of the critical hopping amplitude tcritn (∆), as can be seen
from the figure. Figure (4.4) shows the full phase diagram of the model as a
function of the detuning ∆ obtained from the fermionic approximation only.

The critical hopping amplitude tcritn (∆) can easily be calculated from the
analytic expressions for the chemical potential given above. Figure (4.5) shows
the dependence of the critical hopping amplitude from the detuning ∆ for the
different Mott lobes. One recognizes the unboundness of the first lobe, i.e.,
tcritn (∆)→∞, as ∆→ −∞.
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Chapter 5

Summary of the Work

Phase transitions always attracted the attention of researchers. Quantum phase
transition, characterized by a non-thermal control parameter have been of recent
interest. The aim of this thesis is to study the quantum phase transition in the
Jaynes-Cummings-Hubbard model, which corresponds to a fundamental config-
uration exhibiting the quantum phase transition of light. First, we introduced
the JCH model and discussed some of its feaures. Then we introduced the way
of calculation of the chemical potential which is cruicial in the determination
of the phase boundaries between the Mott-insulator phase and the Superfluid
phase. Then we used a transformation to decouple the hopping term in the JCH
Hamiltonian and derived the corresponding mean-field Hamiltonian.

Next, we presented two simple analytic approximation schemes for the de-
termination of the phase boundaries of the Jaynes-Cummings-Hubbard model.
The first approximation described the particle-hole excitations in the vicinity of
the Mott-insulator to superfluid transition for a specific filling by a simple ef-
fective spin model, which generalizes the known results to arbitrary short-range
hoppoing. The second approximation treats the spins as fermions, which allows
for a simple solution of the model by means of a Fourier transformation. A
comparison of both the methods to the results of density-matrix renormaliza-
tion group (DMRG) and mean-field data shows reasonable agreement to the
numerics. As a testing ground, we selected two systems and applied both the
approximation schemes to them. The first one is a JCH model with positive
effective-mass and nearest-neighbor hopping and the second, a linear ion chain.

The approximative description by effective strong-coupling Hamiltonians
makes very good quantitative predictions for the phase boundaries of the Mott-
insulating lobes for small hopping and can be straigh forewardly written down
upto second order. The fermion approximation also performs very well for the
lower boundaries but is less accurate for the upper ones. It does make, however,
rather good predictions for the critical hopping at commensurate fillings and
has the advantage of giving a closed form for the ground state in the whole pa-
rameter regime. Altogether, both methods provide quite reasonable results for
the phase boundaries compared to numerical results from DMRG simulations.
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